## Calculation Policy

## for Mathematics



# Gentleshaw Primary 

## Academy

2020/21

## Abouf our Calculaction Policy

The following calculation policy has been devised to meet requirements of the National Curriculum 2014 for the teaching and learning of mathematics, and is also designed to give pupils a consistent and smooth progression of learning in calculations across the school.

## Age stage expectations

The calculation policy is organised according to age stage expectations as set out in the National Curriculum 2014, however it is vital that pupils are taught according to the stage that they are currently working at, being moved onto the next level as soon as they are ready, or working at a lower stage until they are secure enough to move on.

Providing a context for calculation:
It is important that any type of calculation is given a real life context or problem solving approach to help build children's understanding of the purpose of calculation, and to help them recognise when to use certain operations and methods when faced with problems. This must be a priority within calculation lessons.

## White Rose:

At Gentleshaw Academy planning follows the White Rose scheme of learning. Listed below are the formal methods that children will be taught at their respective age range. Children will also be taught using concrete and abstract methods. These methods can be found at http://mathshub.sjb.school/tag/white-rose/



Add pairs of 2 digit numbers, moving to partitioned column method once secure adding tens and units. (Units first)


Note: Children who
Note: Once children can add a multiple of 10 to a 2 digit number mentally ( $80+11$ ), they are ready to add pairs of 2 digit numbers that do cross the 10s boundary.

are confident and accurate should move to the expanded column method. (See year 3).




## Year 5 Add numbers with more than 4 digits

Including money, measures and decimals with different numbers of decimal places.


The decimal point should be aligned in the same way as the other place value columns, and must remain in the same column in the answer row.

Numbers should exceed 4 digits.
Pupils should be able to add more than two values, carefully aligning place value columns.

$$
\begin{aligned}
& \text { Children should: } \\
& \begin{array}{l}
\text { Understand the place value of tenths and hundredths and } \\
\text { use this to align numbers with different numbers of decimal } 7 \\
\text { tenths to reinforce place } \\
\text { value. }
\end{array}
\end{aligned}
$$



## Year 1 Subtract from numbers up to 20

Children consolidate understanding of subtraction practically,
 showing subtraction on bead strings, using cubes etc. and in familiar contexts, and are introduced to more formal recording using number lines as below:

## Subtraction by taking away:



Count backwards in 1s along a numbered number line, using numbers under 20.


$$
\begin{equation*}
7-4=3 \tag{sin}
\end{equation*}
$$

Model subtracting using 100 squares, numbered number
lines/tracks and practically.

Finding the difference between:

Introduce this as 'finding the difference between' and 'how many more' in familiar contexts.


## Mental subtraction:

Children should start recalling subtraction facts up to and within 10 and 20, and should be able to subtract zero.





Subtract with decimal values, including mixtures of integers and decimals, aligning the decimal point.

Children should be able to mentally subtract larger numbers.


Pupils should be able to apply their knowledge of a range of mental strategies, mental recall skills and informal and formal written methods when selecting the most appropriate method to work out subtraction problems.


Children should also understand the symbol of multiplication and could begin to use it when recording their work.



## Year 3 Multiply 2-digits by a single digit number

Introduce the grid method for multiplying 2-digit by single-digits:

Eg. $\quad 23 \times 8=184$

| $X$ | 20 | 3 |
| :---: | :---: | :---: |
| 8 | 160 | 24 |

$160+24=184$

Link the layout of the grid to an array initially:


Introduce the grid method with children physically making an array to represent the calculation (e.g. make 8 lots of 23 with 10s and 1s place value counters), then translate this to grid method format (see video clip).

To do this, children must be able to:

1) Partition numbers into tens and units
2) Multiply multiples of ten by a single digit (e.g. $20 \times 4$ ) using their knowledge of multiplication facts and place value
3) Recall and work out multiplication facts in the 2, 3, 4, 5, 8 and 10 times tables.
4) Work out multiplication facts not known by repeated addition or other taught mental strategies (e.g. by commutative law, working out near multiples and adjusting, using doubling etc.) Strategies to support this are repeated addition using a number line, bead bars and arrays:

$9 \times 4=36$



Approximate before they calculate, and make this a regular part of their calculating, going back to the approximation to check the reasonableness of their answer.
e.g.: $349 \times 9$ is approximately $350 \times 10=3500$

Multiply multiples of 10 by 10 using their times tables knowledge.
Recall all $12 \times 12$ facts.



Approximate
Calculate
Check it mate!


Children should:

- Use lots of apparatus, arrays and picture representations
- Be taught the difference between grouping and sharing
- Be able to count in multiples of 2,5 and 10
- Understand and find half of a group of objects by sharing into two equal groups



This final step is only taught once the
children are confident with 'remainders'.



If children are confident and accurate:
Introduce chunking for long division for pupils who are ready to divide any number by a 2 digit number. (2678 $\div 19$ ). This is a year 6 expectation - see year 6.

## $\square$ Year 6 <br> Divide up to 4 digit numbers by both single digit and 2 digit numbers.

Short division

## $0812 \cdot 125$ $8 \longdiv { 6 ^ { 6 } 4 9 ^ { \prime } 7 \cdot } \cdot 0 ^ { 2 } 0 ^ { 4 } 0$

Short division with remainders: Pupils should continue to use this method, but with numbers to at least 4 digits, and understand how to express remainders as fractions, decimals, whole number remainders and rounded numbers. Real life problem solving contexts need to be the starting point where pupils have to consider the most appropriate way to express the number.

Calculating a decimal remainder: In this example, rather than expressing the remainder as $r 1$, a decimal point is added after the units because there is still a reminder and the one remainder is carried onto zeros after the decimal point (to show there was no decimal value in the original number). Keep dividing to an appropriate degree of accuracy for the problem being solved.

Long division - Bus Stop.

-Children will refer to the WIK box to check how many 15 s can be subtracted away from the number.

Children will need to create a 'WIK' box (what I know) at the side of their book.
e.g. 15

30
Must be aligned in the correct place value for subtracting

