Gentleshaw Primary Academy

Representations and Formal Methods Calculation Policy 2023

Multiplication and Division

$$
\mathrm{KSI} \text { and } \mathrm{KS} 2
$$

Year 2 Multiplication- Solve I step problems using multiplication.

Year 2 Multipication- Solve 1 step problems using multiplication.

Multiply 3 digit by 2 digit numbers:

Multiply 3 digit by 2 digit numbers:

Th	\mathbf{H}	\mathbf{T}	\mathbf{O}
	2	3	4
\times		3	2
	4	6	8
7	0	2	0
7	4	8	8

Multiply 4-digit numbers by 2-digit numbers.

Year 6 Multiplication- Multiply 4 digit by 2 digit numbers
Multiply one-digit numbers with up to two decimal places by whole numbers.

Year I Division Solve I-step problems using multiplication (sharing)		
Representations	Formal Method	Skill
Children to use a range of concrete resources to to practically share.	Concrete Pictorial Year 2 readiness Grouping-introduce when ready $6 \div 2=3$ How many children will receive 2 biscuits each. How many groups of 2 are there in 6? There are 3 groups of 2 in 6 .	Children solve problems by sharing amounts into equal groups. In Year I, children use concrete and pictorial representations to solve problems. They are not expected to record division formally

Year 3 Division Recall division facts for $3,4,6,8 x$ tables. 2-digits by I-digit (grouping without remainders)		
Representations	Formal Method	Skill
Concrete- 2 digit $\div 1$ digit when reliant on knowledge of multiplication facts. This method is to be used when using multiplication facts of up to 12×12. $\begin{array}{lllllll} 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{array}$ There are 7 groups of 6 in 42 . Concrete- 2 digit $\div 1$ digit division using PV counters (without remainders) $84 \div 4=21$	Abstract- Recall of division facts at speed. Year 4 readiness Abstract 2 digit \div I digit division using PV counters (without remainders) $84 \div 4=21$	By the end of year 3, children need to be secure with the recall of $3,6,4,8$ times tables. By the end of year 3, children should be exposed to division of 2 digit $\div 1$ digit. This will be revisited in year 4 and therefore children do not need to be secure in this skill by the end of year 3 . Exposure to this method concretely will support learning.

Year 4 Division Recall division facts for all times tables. 2 digit by I digit (with and without remainders) 3 digit by I digit (with and without remainders)		
Representations	Formal Method	Skill
4 excharge	2 digit \div I digit division (without remainders) $84 \div 4=21$ 2 digit \div I digit division using PV counters (with exchanging without remainders) $72 \div 3$ $\begin{gathered} 241 \\ 3172 \\ 88888 \end{gathered}$	By the end of Year 4 children are to recall all division facts for multiplication tables up to 12 $\times 12$. Children should use concrete resources to solve 2 and 3 digit by I digit division (Year 5 readiness).

	Repeat this with remainders. Abstract- 2 digit $\div 1$ digit division (with exchanging without remainders) $72 \div 3$ Repeat this with remainders.	

$13 \begin{gathered}008 \\ -\frac{1105}{104}\end{gathered}$

$\frac{008}{13}$| $1^{\circ} 105$ |
| :---: |
| 104 |
| 006 |

008

13	1005
104	
0065	

There is 6 left over

Drag the 5 down, you now need
to work out how many 13 s go
into 65. Look back at your I3
times tables.
13 goes into 65 perfectly.
There are 5 I 3 s in 65
Put your 5 above the bus stop.


```
The answer is \(85.1105 \div 13=85\)
```

The answer is $85.1105 \div 13=85$
Use the inverse to check.

```
Use the inverse to check.
```


